Modelling 1

 SUMMER TERM 2020ıohannes GUTENBERG UNIVERSITȦT MAINZ

LECTURE 2
 Vector Spaces

Euclidean Geometry \& Vector Spaces

Development

One-dimensional quantities

- Real numbers
- Continuous straight line

Higher dimensions

- Distances to landmarks
- Non-linear (hard to calculate)
- Cartesian coordinates
- Projection on coordinate axes
- Linear structure
- Convenient \& fully understood

- \quad dist $_{1}$

Vectors

Vectors

Geometry:
vectors are arrows in space

Algebra:
arrays of numbers

Vector Addition

Adding Vectors:
Concatenation

$$
\mathbf{x}+\mathbf{y}=\left(\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right)
$$

Algebra:
adding numbers

Structure: Abelian Group

Group

C++ pseudo-code:
schematic:
group
template <set T, operator $\circ>$
T operator"○" (T, T)
Axioms: closed operation, associative, neutral element, inverse

Group Axioms

- Closed: Set G, closed operation " \circ ": $G, G \rightarrow G$
- Associative: $\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$
- There is a neutral element $i d \in G: i d \circ g=g \circ i d=g$
- For each $g \in G$ there is an inverse $g^{-1} \in G$:

$$
g \circ g^{-1}=g^{-1} \circ g=i d
$$

What do the axioms mean?

closed operation
all operations always possible

$$
\forall a, b \in G: a \circ b \in G
$$

What do the axioms mean?

Neutral element

(unique) null operation

$$
\forall a \in G: a \circ i d=a
$$

Inverse
all operations reversible
$\forall a \in G: a \circ a^{-1}=i d$ no information loss!

What do the axioms mean?

associativity

effect "adds up": operations can be summarized / grouped together consistently

$$
\forall a, b, c \in G:(a \circ b) \circ c=a \circ(b \circ c)
$$

What do the axioms mean?

commutativity

intuition: grid / flat structure

$$
\forall a, b \in G: a \circ b=b \circ a
$$

Euclidean Space is not Curved

Beyond Middle-World

http://en.wikipedia.org/wiki/Gravity_Probe_B

Back to the Vectors...

Vector Operations

vector-scalar product
$\boldsymbol{\lambda \cdot \mathbf { v }}(\lambda \in \mathbb{R}, \mathbf{v} \in V)$

adding vectors
vector-addition
$\mathbf{v}+\mathbf{w} \quad(\mathbf{v}, \mathbf{w} \in V)$

Structure: Vector Space

Vector Spaces

Vector space:

- Set of vectors V
- Based on field F (usually F = \mathbb{R})
- Two operations:
- Adding vectors $\mathbf{u}=\mathbf{v}+\mathbf{w}(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V})$
- Scaling vectors $w=\lambda v(\mathbf{u} \in \mathrm{~V}, \lambda \in \mathrm{~F})$

Vector Spaces

Vector space axioms:

- Vector addition - Abelian group:
- $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$:
$(u+v)+\mathbf{w}=\mathbf{u}+(v+w)$
- $\forall \mathbf{u}, \mathbf{v} \in \mathrm{V}$:
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
$=\exists \mathbf{0} \in \mathrm{V}: \forall \mathbf{v} \in \mathrm{V}: \quad \mathbf{v}+\mathbf{0}=\mathbf{v}$
- $\forall \mathbf{v} \in \mathrm{V}: \exists$ " $-\mathbf{v}$ " $\in \mathrm{V}: \mathbf{v}+(-\mathbf{v})=\mathbf{0}$
- Compatibility with scalar multiplication:
= $\forall \mathbf{v} \in \mathrm{V}, \lambda, \mu \in \mathrm{F}: \quad \lambda(\mu \mathbf{v})=\lambda \mu(\mathbf{v})$
- $\forall \mathbf{v} \in \mathrm{V}: \quad 1 \cdot \mathbf{v}=\mathbf{v}$
- $\forall \mathbf{v}, \mathbf{w} \in V, \lambda \in F: \quad \lambda(\mathbf{v}+\mathbf{w})=\lambda \mathbf{v}+\lambda \mathbf{w}$
- $\forall \mathbf{v} \in \mathrm{V}, \lambda, \mu \in \mathrm{F}: \quad(\lambda+\mu) \mathbf{v}=\lambda \mathbf{v}+\mu \mathbf{v}$

You can combine it...

Linear Combinations:
This is basically all you can do.

$$
\mathbf{y}=\sum_{i=1}^{n} \lambda_{i} \mathbf{x}^{(i)}
$$

Algebraically

Notions \& Theorems

Definitions (look it up)

- Span ($\operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\})$ - set of linear combinations
- Generating set - set of vectors that span the space
- Basis - minimal set of vectors that span the space
- Dimension - cardinality of basis

Theorems (look it up)

- Every vector space has a basis, cardinality is fixed
- Every finite d-dimensional vector space is isomorphic to F^{d}
- Proof: Take coordinates in basis, stack up in a vector

Function Spaces

Vector Spaces

Function spaces:

- Space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- Space of all functions $f:[0,1]^{2} \rightarrow \mathbb{R}^{3}$
- etc...

Operations

Adding / Multiplying Functions?

- $(f+g)(x)=f(x)+g(x)$
- $(\lambda f)(x)=\lambda f(x)$

Closed operations?

- Vector spaces:
- $V_{a}=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ continuous $\}$
- $V_{b}=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ differentiable $\}$
- $V_{c}=\left\{f:[0,1] \rightarrow \mathbb{R} \mid f 2^{\text {nd }}\right.$ order polynomial $\}$
- Not a vector space:
- $V_{d}=\left\{f:[0,1] \rightarrow \mathbb{R}^{>0}\right\}$

Function Spaces

Intuition:

- Start with a finite dimensional vector
- Increase sampling density towards infinity
- Real numbers: uncountable amount of dimensions

Example: Image spaces

Example: Image spaces

Images

- Vacation photos
- 4000×3000 pixel (12 MPixel)
- RGB images
- 3 numbers per pixel
- $3 \times 12 \mathrm{M}=36,000,000$ dimensions
- High-dimensional vector space

Shape Spaces

Examples for Linear Shape Spaces

- "Morphable Face Model"

Volker Blanz \& Thomas Vetter
ACMSiggraph 1999

- https://www.youtube.com/watch?v=jkz-IIIJrig

Back to Generic Function Spaces...

Function Spaces

Intuition:

- Start with a finite dimensional vector
- Increase sampling density towards infinity
- Real numbers: uncountable amount of dimensions

Intuition

Function f

spooky, uncountably-infinite thing

Think of this:

Analogy: Think of functions as array of numbers

- Also helps understanding derivatives, integrals, ...
- Subtle differences (pure math lectures)

$$
\begin{gathered}
\text { More Tools: } \\
\text { Angles \& Length }
\end{gathered}
$$

Scalar Product

Scalar Product*)

$\mathbf{v} \cdot \mathbf{w}=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cdot \cos \angle(\mathrm{v}, \mathrm{w})$
also: $\langle\mathrm{v}, \mathrm{w}\rangle$
*) also known as inner product or dot-product

Scalar*) Product

$$
\begin{aligned}
& \mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\| \cdot\|\mathbf{y}\| \cdot \cos (\alpha)
\end{aligned}
$$

Scalar*) Product:
measuring angles \& length

$$
\begin{gathered}
\mathbf{x} \cdot \mathbf{y}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \\
=x_{1} \cdot y_{1}+x_{2} \cdot y_{2}+x_{3} \cdot y_{3}
\end{gathered}
$$

Algebra:
sum up component product

Scalar Product on Function Spaces

Scalar products

- For suitable*) functions

$$
f, g: \Omega \subset \mathbb{R} \rightarrow \mathbb{R}
$$

the standard scalar product is defined as:

$$
f \cdot g=\langle f, g\rangle:=\int_{\Omega} f(x) \cdot g(x) d x
$$

- Measures an norm and angle in an abstract sense

Orthogonal Function

$$
\langle f, g\rangle=0
$$

Orthogonal functions

- Do not influence each other in linear combinations.
- Adding one to the other does not change the value in the other ones direction.

Abstract Scalar Product

Abstract scalar product

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow F
$$

V is an (abstract) vector space, F is a field (we always use $\mathbb{R}!$)

Scalar product axioms:

$$
\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \lambda \in F:
$$

- Symmetry:

$$
\langle\mathrm{x}, \mathrm{y}\rangle=\langle\mathrm{y}, \mathrm{x}\rangle
$$

- Linearity:

$$
\begin{aligned}
& \langle\lambda \mathbf{x}, \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathrm{y}\rangle \\
& \langle\mathrm{x}+\mathrm{y}, \mathrm{z}\rangle=\langle\mathrm{x}, \mathrm{z}\rangle+\langle\mathrm{y}, \mathrm{z}\rangle
\end{aligned}
$$

- Positive-definiteness:

$$
\begin{aligned}
& \langle\mathrm{x}, \mathrm{x}\rangle \geq 0 \\
& {[\langle\mathrm{x}, \mathrm{x}\rangle=0] \Leftrightarrow[\mathrm{x}=0]}
\end{aligned}
$$

In Practice...

Finite-dimensional vector spaces

$$
\begin{gathered}
\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d} \\
\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{x}^{\mathrm{T}} \mathrm{M} \mathrm{y}
\end{gathered}
$$

For a symmetric, positive-definite matrix M

- More on matrices later...

Special case: diagonal matrix

- Function spaces:

$$
\langle f, g\rangle:=\int_{\Omega} f(x) \cdot g(x) \cdot \omega(x) d x, \quad \omega(x)>0
$$

Bases for function spaces

Basis

Examples: bases for function spaces

- Finite dimensional case
- Polynomials of degree k
- B-Spline functions over fixed intervals (details soon)
- Countably infinite
- Set of all polynomials
- Every linear combination is finite
- Uncountably infinite
- Set of smooth functions (e.g., $C^{0}, C^{1}, \ldots C^{\infty}$)
- Set of square integrable functions $\left(L_{2}\right)$
- Hard to construct a basis

Schauder Basis

Schauder Basis

- Series representation of vectors
- Important for function spaces

Definition: Schauder-Basis of V

- Sequence of basis vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots \in V$
- For every $\mathbf{v} \in V$, there is a unique sequence $\lambda_{1}, \lambda_{2}, \ldots \in F$ such that

$$
\lim _{n \rightarrow \infty}\left\|\mathbf{v}-\sum_{i=1}^{n} \lambda_{i} \mathbf{b}_{i}\right\|=0
$$

Schauder Basis

Function spaces L^{p} :

- $\langle f, g\rangle:=\int_{\Omega} f(x) g(x) d x, \quad\|f\|_{2}:=\sqrt{\langle f, f\rangle}$
- L^{2} space of square-integrable functions: Integral exists
- Analogous L^{p}.

$$
\|f\|_{p}:=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Schauder Basis

Schauder-Bases for L^{p}

- Fourier basis with $\Omega=[0,2 \pi)$

$$
B=\left\{\frac{1}{2} \sqrt{2} \sin 2 \pi k x, \left.\frac{1}{2} \sqrt{2} \cos 2 \pi k x \right\rvert\, k \in \mathbb{N}\right\}
$$

- Haar basis for fixed intervals

Sequence space as substitute

- l_{2} with norm $\left\|\left(\lambda_{1}, \lambda_{2}, \ldots\right)^{T}\right\|:=\sqrt{\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}+\cdots}$
- L^{2} on $[0,2 \pi]$
- L^{2} can be approximated (to arbitrary precision) with l_{2}

"Standard" Setting

We usually consider the Hilbert Space L^{2}

Hilbert space

- Scalar product $\langle f, g\rangle$
- Norm $\|f\|:=\sqrt{\langle f, f\rangle}$
- Complete space (convergent "Cauchy" series do have a limit)

"Standard" Setting

We usually consider the Hilbert Space L²

Space L^{2}

- Functions $f: \Omega \rightarrow \mathbb{R}$ with domain $\Omega \subseteq \mathbb{R}^{d}$, square integrable ($\langle f, g\rangle$ exists for all $f, g \in L^{2}$)
- $\langle f, g\rangle:=\int_{\Omega} f(x) \cdot g(x) d x$ (Lesbeque integral)
- For $\Omega=[0,2 \pi)^{d}$, the Fourier-Basis is a suitable Schauder-Basis
- Isometry between L^{2} and ℓ_{2} (= square-summable sequences, with standard scalar product w/infinite sum)

"Standard" Setting

Really?

If we perform numerical computations

- We just use a finite-dimensional representation
- An array is a good starting point

Let's look at this in more detail...
...in one of the later sections!

